基于网络药理学和分子对接方法探讨香叶木素治疗高尿酸血症肾病的分子机制Molecular mechanism of diosmetin in the treatment of hyperuricemic nephropathy based on network pharmacology and molecular docking
雷欢;邓琴;刘子源;张维;徐凌云;
摘要(Abstract):
目的 基于网络药理学和分子对接的方法,探讨香叶木素治疗高尿酸血症肾病(HN)的分子机制。方法 运用中药系统药理学平台(TCMSP)、SwissTargetPrediction数据库、ChEMBL数据库筛选香叶木素的作用靶点基因,借助GeneCards、DisGeNET数据库检索HN疾病靶点基因,运用Venny 2.1在线工具获取香叶木素与HN的共有靶点基因;基于STRING数据库构建共有靶点基因的蛋白质—蛋白质相互作用关系(PPI)网络,通过Cystoscape软件进行可视化分析,拓扑学分析筛选核心靶点基因;借助DAVID数据库对共有靶点基因进行GO功能注释和KEGG通路富集分析。以核心靶点基因编码的蛋白为受体、香叶木素为配体,采用AutoDock Vina 1.1. 2软件进行分子对接验证。结果 共挖掘出香叶木素潜在作用靶点基因150个、HN相关靶点基因443个,两者共有靶点基因22个。共有靶点基因的PPI网络共包含节点22个、边85条;筛选得到核心靶点基因8个,包括TP53、XDH、ESR1、ABCG2等。富集分析共得到GO功能条目82个,其中生物过程51个(涉及尿酸代谢等)、细胞组成13个(涉及细胞质等)、分子功能18个(涉及跨膜转运蛋白活性等);共富集到35个KEGG信号通路,包括TP53信号通路、磷脂酰肌醇3激酶/蛋白激酶B(PI3K/Akt)信号通路、肿瘤坏死因子(TNF)信号通路、核因子κB(NF-κB)信号通路等。分子对接结果表明,香叶木素与TP53等8个核心靶点基因编码蛋白的结合能均低于-5 kcal/mol,有较强的结合活性。结论 香叶木素可能是通过作用于TP53、XDH、ESR1、ABCG2等核心靶点基因,进而调控TP53信号通路、PI3K/Akt信号通路、TNF信号通路、NF-κB信号通路等多条通路发挥对HN的治疗作用。
关键词(KeyWords): 香叶木素;高尿酸血症肾病;网络药理学;分子对接;分子机制
基金项目(Foundation):
作者(Authors): 雷欢;邓琴;刘子源;张维;徐凌云;
参考文献(References):
- [1]STRILCHUK L,FOGACCI F,CICERO A F.Safety and tolerability of available urate-lowering drugs:a critical review[J].Expert Opin Drug Saf,2019,18(4):261-271.
- [2]王慧娟,茅建春.中药对尿酸性肾病的机制研究进展[J].风湿病与关节炎,2017,6(6):71-75.
- [3]PENG A,LIN L,ZHAO M,et al.Identifying mechanisms underlying the amelioration effect of Chrysanthemum morifolium Ramat.'Boju'extract on hyperuricemia using biochemical characterization and UPLC-ESI-QTOF/MS-based metabolomics[J].Food Funct,2019,10(12):8042-8055.
- [4]YANG Y,GONG X B,HUANG L G,et al.Diosmetin exerts anti-oxidative,anti-inflammatory and anti-apoptotic effects to protect against endotoxin-induced acute hepatic failure in mice[J].Oncotarget,2017,8(19):30723-30733.
- [5]LIU Y J,CHEN H,XIANG H L,et al.Inhibition and molecular mechanism of diosmetin against xanthine oxidase by multiple spectroscopies and molecular docking[J].New J Chem,2020,44(17):6799-6809.
- [6]WU H,ZHOU M,LU G,et al.Emodinol ameliorates urate nephropathy by regulating renal organic ion transporters and inhibiting immune inflammatory responses in rats[J].Biomed Pharmacother,2017,96:727-735.
- [7]PARK E J,CHOI K S,YOO Y H,et al.Nutlin-3,a small-molecule MDM2 inhibitor,sensitizes Caki cells to TRAIL-induced apoptosis through p53-mediated PUMA upregulation and ROS-mediated DR5 upregulation[J].Anticancer Drugs,2013,24(3):260-269.
- [8]YANG L,CHANG B,GUO Y,et al.The role of oxidative stressmediated apoptosis in the pathogenesis of uric acid nephropathy[J].Ren Fail,2019,41(1):616-622.
- [9]ZHANG X W,ZHOU M,AN L,et al.Lipophilic extract and tanshinoneⅡA derived from salvia miltiorrhiza attenuate uric acid nephropathy through suppressing oxidative stress-activated MAPKpathways[J].Am J Chin Med,2020,48(6):1455-1473.
- [10]GONG W,SONG J,CHEN X,et al.Estrogen-related receptor-αmediates puromycin aminonucleoside-induced mesangial cell apoptosis and inflammatory injury[J].Am J Physiol Renal Physiol,2019,316(5):906-913.
- [11]QIAN X,WANG X,LUO J,et al.Hypouricemic and nephroprotective roles of anthocyanins in hyperuricemic mice[J].Food Funct,2019,10(2):867-878.
- [12]RISTOC B,SIVAPRAKASAM S,NARAYANAN M,et al.Hereditary hemochromatosis disrupts uric acid homeostasis and causes hyperuricemia via altered expression/activity of xanthine oxidase and ABCG2[J].Biochem J,2020,477(8):1499-1513.
- [13]CHEN M,YE C,ZHU J,et al.Bergenin as a Novel urate-lowering therapeutic strategy for hyperuricemia[J].Front Cell Dev Biol,2020,29;8:703.
- [14]LU H,YAO H,ZOU R,et al.Galangin suppresses renal inflammation via the inhibition of NF-κB,PI3K/Akt and NLRP3 in uric acid treated NRK-52E tubular epithelial cells[J].Biomed Res Int,2019,2019:3018357.
- [15]ZHANG Y,TAN X,LIN Z,et al.Fucoidan from laminaria japonica inhibits expression of GLUT9 and URAT1 via PI3K/Akt,JNKand NF-κB pathways in uric acid-exposed HK-2 cells[J].Mar Drugs,2021,19(5):238-248.