| 92 | 0 | 51 |
| 下载次数 | 被引频次 | 阅读次数 |
目的 运用CiteSpace 6.2 R4软件分析人工智能应用于慢性阻塞性肺疾病(COPD)领域国内外研究现状与热点趋势。方法 以“慢性阻塞性肺疾病”“慢阻肺”“人工智能”“chronic obstructive pulmonary disease”“COPD”“深度学习”“机器学习”“artificial intelligence”“deep learning”“machine learning”为主题词,检索中国知网、万方数据知识服务平台、维普网、Web of science核心数据库收录的人工智能应用于COPD领域的相关文献,检索时间为自建库至2025年3月31日。基于CiteSpace 6.2 R4软件对文献进行网络图谱分析。结果 共纳入1 292篇文献,其中中文文献197篇、英文文献1 095篇,发文量整体呈上升趋势。中文期刊《放射学实践》刊载文献数量最多(6篇),英文期刊《American Journal of Respiratory And Critical Care Medicine》刊载文献数量最多(56篇)。英文文献发文量前3名的国家分别为美国、中国、英国,中心性前3名的国家分别为美国、英国、西班牙。中文文献形成199个关键词,19个关键词聚类;英文文献形成446个关键词,27个关键词聚类。中英文共有热点关键词为“慢阻肺”“机器学习”“人工智能”“深度学习”,主要聚类为预测模型、人工智能、体层摄影术、物联网、air pollution、transfer learning、mortality。中英文突现关键词为“声学分析”“慢性阻塞性”“Particulate matter”“Transfer learning”和“Spirometry”。结论 人工智能应用于COPD领域研究热度逐年上升,英文文献发文量整体高于中文文献。当前主要研究热点为基于CT影像、肺功能及呼吸音等数据的风险预测模型搭建、物联网应用、迁移学习、空气污染和病死率。CT影像组学和人工智能的应用最为深入和广泛,国内外研究情况有一定差异。
Abstract:Objective To analyze the current status and trends of the application of artificial intelligence in the field of chronic obstructive pulmonary disease(COPD) both domestically and internationally using CiteSpace 6. 2 R4 software. Methods Using "chronic obstructive pulmonary disease", "COPD", "artificial intelligence", "deep learning" and "machine learning" as the keywords, we retrieved relevant domestic and international literature from databases of CNKI, WanFang, VIP, and Web of Science Core Collection. The retrieval spanned from database inception to March 31, 2025. A network mapping analysis of the literature was conducted using CiteSpace 6. 2 R4 software. Results A total of 1,292 articles(197 Chinese and 1,095 English) were included, showing an overall upward trend in publication volume. Among Chinese journals, "Radiologic Practice" published the most articles(6), while among English journals, the "American Journal of Respiratory and Critical Care Medicine" ranked first(56 articles). The top three countries in English publication volume were the United States(341 articles), China(227 articles), and the United Kingdom(978. 86%). The top three in centrality were the United States(0. 32), the United Kingdom(0. 31), and Spain(0. 20). Chinese literature yielded 199 keywords, 519 connections, and 19 keyword clusters; English literature yielded 446 keywords, 2,377 connections, and 27 keyword clusters. Common hotspots in both languages included "COPD", "machine learning", "artificial intelligence", and "deep learning". The main clusters were predictive models, artificial intelligence, tomography, the Internet of Things(IoT), air pollution, transfer learning, and mortality. Emerging keywords in Chinese literature were "lung cancer", "acoustic analysis", "chronic obstructive", and "pulmonary disease", while those in English literature were "particulate matter", "transfer learning", and "spirometry". Conclusions Research on AI in COPD is rising yearly, with English publications surpassing Chinese. Current hotspots focus on predictive model building based on CT images, pulmonary function, respiratory sounds, etc., IoT applications, transfer learning, air pollution, and mortality. CT imaging and AI applications are well-developed and widely used, showing some differences between domestic and international research.
[1] Global strategy for prevention,diagnosis and management of COPD:2025[EB/OL].[2024-12-16]. https://goldcopd. org/2025-gold-report/
[2]中华医学会呼吸病学分会慢性阻塞性肺疾病学组,中国医师协会呼吸医师分会慢性阻塞性肺疾病工作委员会.慢性阻塞性肺疾病诊治指南(2021年修订版)[J].中华结核和呼吸杂志,2021,44(3):170-205.
[3] ZHOU M, WANG H, ZENG X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017:a systematic analysis for the global burden of disease study 2017[J]. Lancet,2019,394(10204):1145-1158.
[4]黄文君,葛艳明,董鹏,等.慢性阻塞性肺疾病的人工智能研究进展[J].国际医学放射学杂志,2021,44(6):662-666.
[5] PHILLIPS C O, SYED Y, PARTHALAIN N M, et al. Machine learning methods on exhaled volatile organic compounds for distinguishing COPD patients from healthy controls[J]. J Breath Res,2012,6(3):036003.
[6] ZHANG M, SU S, BHATNAGAR R K, et al. Prediction and analysis of the protein interactome in Pseudomonas aeruginosa to enable network-based drug target selection[J]. PLoS One, 2012,7(7):e41202.
[7] AMARAL J L, LOPES A J, JANSEN J M, et al. Machine learning algorithms and forced oscillation measurements applied to the automatic identification of chronic obstructive pulmonary disease[J]. Comput Methods Programs Biomed, 2012,105(3):183-193.
[8] HAUSCHILD A C, BAUMBACH J I, BAUMBACH J. Integrated statistical learning of metabolic ion mobility spectrometry profiles for pulmonary disease identification[J]. Genet Mol Res, 2012,11(3):2733-2744.
[9]应俊,杨策源,李全政,等.基于深度学习方法的慢性阻塞性肺疾病危重度分类研究[J].生物医学工程学杂志,2017,34(6):842-849.
[10]马孝斌,张丽晓,李杨,等.基于优化决策树的慢性阻塞性肺疾病预测方法[J].山东师范大学学报(自然科学版),2017,32(2):18-29.
[11] GONZALEZ G, ASH S Y, VEGAS-SANCHEZ-FERRERO G, et al. Disease staging and prognosis in smokers using deep learning in chest computed tomography[J]. Am J Respir Crit Care Med,2018,197(2):193-203.
[12] BIAN H, ZHU S, ZHANG Y, et al. Artificial intelligence in chronic obstructive pulmonary disease:research status, trends,and future directions-a bibliometric analysis from 2009 to 2023[J]. Int J Chron Obstruct Pulmon Dis, 2024,19:1849-1864.
[13]周丽娟.基于机器学习的COPD患者不良吸入风险预测模型研究[D].成都:电子科技大学,2022.
[14]周丽娟,温贤秀,吕琴,等.使用机器学习建立慢性阻塞性肺疾病患者重度气流受限风险预警模型研究[J].中国全科医学,2022,25(2):217-226.
[15]藏雅宁.基于数字化六分钟步行试验的连续生理数据预测价值挖掘研究[D].上海:上海体育学院,2022.
[16]张博超,杨朝,郭立泉,等.基于机器学习的慢性阻塞性肺疾病急性加重预测模型的研究[J].中国康复理论与实践,2022,28(6):678-683.
[17]李少凡,李莉芳,何航帜,等.慢性阻塞性肺疾病急性加重住院患者出院状态预测研究[J].中华疾病控制杂志,2024,28(6):685-690.
[18]顾馨雨.慢性阻塞性肺疾病急性加重期并发Ⅱ型呼吸衰竭的临床预测模型构建及验证[D].扬州:扬州大学,2023.
[19] MEKOV E, MIRAVITLLES M, PETKOV R. Artificial intelligence and machine learning in respiratory medicine[J]. Expert Rev Respir Med, 2020,14(6):559-564.
[20] HE H, ZHAO H, LI L, et al. Non-experimental rapid identification of lower respiratory tract infections in patients with chronic obstructive pulmonary disease using multi-label learning[J].Comput Methods Programs Biomed, 2025,261:108618.
[21] ALVES PEGORARO J, GUERDER A, SIMILOWSKI T, et al.Detection of COPD exacerbations with continuous monitoring of breathing rate and inspiratory amplitude under oxygen therapy[J]. BMC Med Inform Decis Mak, 2025,25(1):101.
[22] KRISTENSEN K, OLESEN P H, ROERBAEK A K, et al. Using random forest machine learning on data from a large, representative cohort of the general population improves clinical spirometry references[J]. Clin Respir J, 2023,17(8):819-828.
[23]崔思嘉.基于机器学习的年龄相关肺部改变及肺功能影像组学研究[D].杭州:浙江中医药大学,2021.
[24]王文艳.人工智能机器人诊前风险评估及影像组学对慢性阻塞性肺疾病的诊断价值初探[D].大连:大连医科大学,2023.
[25]罗朝乐.基于影像组学的慢性阻塞性肺疾病频繁急性加重预测模型的构建与验证:一项前瞻性队列研究[D].广州:广东医科大学,2023.
[26] ANGELINI E D, YANG J, BALTE P P, et al. Pulmonary emphysema subtypes defined by unsupervised machine learning on CT scans[J]. Thorax, 2023,78(11):1067-1079.
[27] DU,R,QI,S,FENG,J,et al. Identification of COPD from multi-view snapshots of 3D lung airway tree via deep CNN[J].IEEE Access, 2020,8:38907-38919.
[28] KUMAR S, BHAGAT V, SAHU P, et al. A novel multimodal framework for early diagnosis and classification of COPD based on CT scan images and multivariate pulmonary respiratory diseases[J]. Comput Methods Programs Biomed, 2024,243:107911.
[29] NADEEM S A, ZHANG X, NAGPAL P, et al. Automated CTbased decoupling of the effects of airway narrowing and wall thinning on airway counts in chronic obstructive pulmonary disease[J]. Br J Radiol, 2025,98(1165):150-159.
[30]朱强,朱明辉,杨震,等.基于物联网技术的人工智能医疗关于慢性阻塞性肺疾病的研究现状及进展[J].转化医学电子杂志,2018,5(10):62-65.
[31] MUN E, CHO J. Review of internet of things-based artificial intelligence analysis method through real-time indoor air quality and health effect monitoring:focusing on indoor air pollution that are harmful to the respiratory organ[J]. Tuberc Respir Dis(Seoul), 2023,86(1):23-32.
[32] REID C E, CONSIDINE E M, WATSON G L, et al. Associations between respiratory health and ozone and fine particulate matter during a wildfire event[J]. Environ Int, 2019,129:291-298.
[33] POLAT?,?ALK?,DOGAN?. Determination of COPD severity from chest CT images using deep transfer learning network[J].Multimed Tools Appl, 2022,81(15)21903-21917.
[34] MORALES D R, FLYNN R, ZHANG J, et al. External validation of ADO, DOSE, COTE and CODEX at predicting death in primary care patients with COPD using standard and machine learning approaches[J]. Respir Med, 2018,138:150-155.
[35] CURIALE A H, SAN R. Novel lobe-based transformer model(LobTe)to predict emphysema progression in alpha-1 antitrypsin deficiency[J]. Comput Biol Med, 2025,185:109500.
基本信息:
DOI:
中图分类号:R563.9;G353.1;TP18
引用信息:
[1]战京燕,陈亚南,翟声平.人工智能用于慢性阻塞性肺疾病领域国内外研究热点与趋势分析[J].山东医药,2025,65(09):19-24+28.
基金信息: