33 | 0 | 59 |
下载次数 | 被引频次 | 阅读次数 |
目的 探讨中心体相关激酶2(NEK2)基因敲低对多发性骨髓瘤(MM)细胞介导骨质破坏及核因子κB(NF-κB)信号通路的影响。方法 取MM细胞系(MM. 1S细胞、RPMI 8226细胞),均设置NEK2敲低组、阴性对照组,分别用慢病毒载体-NEK2-RNA干扰、病毒CON077进行感染,用实时荧光定量反转录聚合酶链式反应(RT-qPCR)法检测NRK2 mRNA表达以确认转染效率,选择敲低效率低的细胞与MM细胞共培养。提取骨髓基质细胞(BMSC),将其分为阴性对照组、NEK2敲低组,分别加入RPMI 8226细胞、敲低NEK2的RPMI 8226细胞共培养,RT-qPCR法检测细胞内骨质破坏相关指标NF-κB受体活化因子配体(RANKL)、骨保护蛋白(OPG)mRNA表达。取NEK2敲低组、阴性对照组MM细胞,用CCK-8法检测细胞增殖(以吸光度值表示),流式细胞术检测细胞凋亡率,Western blotting法检测NF-κB信号通路相关蛋白NF-κB、乙酰肝素酶(HPSE)表达,RT-qPCR法检测NF-κB、HPSE mRNA表达。结果 MM. 1S细胞、RPMI-8226细胞NEK2敲低组NEK2 mRNA相对表达量均低于其阴性对照组(P均<0.05),基因敲低效率分别为92.2%、64.0%。与BMSC的阴性对照组比较,NEK2敲低组RANKL mRNA表达低(P<0.05),而OPG mRNA表达高,但差异无统计学意义(P>0.05)。与MM. 1S细胞、RPMI-8226细胞的阴性对照组比较,其NEK2敲低组吸光度值低,细胞凋亡率高,NF-κB、HPSE mRNA相对表达量低(P均<0.05),NF-κB、HPSE蛋白表达低。结论 NEK2基因敲低可能通过调控NF-κB信号通路抑制MM细胞增殖、促进其凋亡,降低HPSE表达,从而抑制MM细胞介导的骨质破坏。
Abstract:Objective To investigate the effects of centrosome-associated kinase 2(NEK2) gene knockdown on multiple myeloma(MM) cell-mediated bone destruction and the nuclear factor kappa B(NF-κB) signaling pathway.Methods MM cell lines(MM. 1S cells and RPMI 8226 cells) were used, with both NEK2 knockdown group and negative control group established for each. Lentiviral vectors carrying NEK2-RNA interference(shRNA) or control virus(CON077) were used for transfection. NEK2 mRNA expression was detected by real-time reverse transcription quantitative polymerase chain reaction(RT-qPCR) to confirm transfection efficiency. Bone marrow stromal cells(BMSCs) were divided into the negative control group and NEK2 knockdown group, which were co-cultured with RPMI 8226 cells or NEK2-knockdown RPMI 8226 cells. RT-qPCR was used to measure the mRNA levels of bone destruction-related markers, including receptor activator of NF-κB ligand(RANKL) and osteoprotegerin(OPG). MM cells from the NEK2 knockdown group and negative control group were selected. Cell proliferation(absorbance value) was assessed using the CCK-8 assay, apoptosis rates were measured by flow cytometry, and NF-κB pathway-related proteins [NF-κB, heparanase(HPSE)] and their mRNA levels were detected by Western blotting and RT-qPCR, respectively. Results NEK2 mRNA expression was significantly lower in the NEK2 knockdown groups of MM. 1S and RPMI 8226 cells than in the negative control groups(both P<0. 05), with knockdown efficiencies of 92. 2% and 64. 0%, respectively. Compared with the negative control group of BMSCs, the NEK2 knockdown group had lower RANKL mRNA expression(P<0. 05), while OPG mRNA expression was higher; no statistically significant difference was found(P>0. 05). Compared with the negative control groups of MM. 1S cells and RPMI-8226 cells, the NEK2 knockdown group of MM. 1S and RPMI 8226 cells had lower absorbance values, higher apoptosis rates, lower NF-κB and HPSE mRNA levels, and higher NF-κB and HPSE protein expression levels(all P<0. 05). Conclusion NEK2 knockdown may inhibit MM cell proliferation, promote apoptosis, and up-regulate HPSE expression by modulating the NF-κB signaling pathway, thereby suppressing MM cell-mediated bone destruction.
[1] SONNEVELD P, VERELST S G, LEWIS P, et al. Review of health-related quality of life data in multiple myeloma patients treated with novel agents[J]. Leukemia, 2013,27(10):1959-1969.
[2] YANG B, YU R L, CHI X H, et al. Lenalidomide treatment for multiple myeloma:systematic review and meta-analysis of randomized controlled trials[J]. PLoS One, 2013,8:e64354.
[3] RKUMA S K, RAJKUMAR V, KYLE R A, et al. Multiple myeloma[J]. Nat Rev Dis Primers, 2017,3:17046.
[4]夏祖耀,杨惠娟,陈宝安.多发性骨髓瘤骨病治疗研究进展[J].中国实验血液学杂志,2016,24(1):275-278.
[5]张建华,董春霞,任方刚,等.核因子κB受体活化因子配体/骨保护素在骨髓瘤中的表达[J].中国药物与临床,2016,16(1):16-18.
[6]姜志平,李风艳. NEK2与肿瘤侵袭转移及耐药性的研究进展[J].实用药物与临床,2022,25(4):350-354.
[7] XIA J, ZHAO H, EDMONDSON J L, et al. Role of NEK2 in tumorigenesis and tumor progression[J]. Trends Mol Med, 2025,31(1):79-93.
[8] HAO M, FRANQU-MACHIN R, XU H, et al. NEK2 induces osteoclast differentiation and bone destruction via heparanase in multiple myeloma[J]. Leukemia, 2017,31:1648-1650.
[9] ZHOU W, YANG Y, XIA J, et al. NEK2 induces drug resistance mainly through activation of efflux drug pumps and is associated with poor prognosis in myeloma and other cancers[J]. Cancer Cell, 2013,23:48-62.
[10]关瑞宇,苏继荣.乙酰肝素酶在肿瘤侵袭转移中的表达及其相关调控[J].中华临床医师杂志,2016,10(2):270-274.
[11]潘倩影,水炜,牛媛媛,等.乙酰肝素酶通过转录因子Runx2调控多发性骨髓瘤细胞功能[J].医学研究杂志,2021,50(9):107-110.
[12] RAMANI V C, ZHAN F, HE J, et al. Targeting heparanase overcomes chemoresistance and diminishes relapse in myeloma[J].Oncotarget, 2016,7:1598-1607.
[13] YANG Y, REN Y, RAMANI V C, et al. Heparanase enhances local and systemic osteolysis in multiple myeloma by upregulating the expression and secretion of RANKL[J]. Cancer Res, 2010,70:8329-8338.
[14]郑冬,袁梅,李娟,等.硼替佐米对多发性骨髓瘤细胞乙酰肝素酶表达及迁移能力的影响[J].中国病理生理杂志,2011,27(5):865-868.
[15] KMATTOU K, HOSE D, RAYNAUD P, et al. Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma[J]. Blood, 2007,109(11):4914-4923.
[16]中国临床肿瘤学会(CSCO)指南工作委员会.多发性骨髓瘤骨病临床诊疗专家共识(2021)[J].临床肿瘤学杂志,2022,27(1):65-72.
[17] HAYWARD D G, FRY A M. NEK2 kinase in chromosome instability and cancer[J]. Cancer Lett, 2006,237:155-166.
[18] ZHONG X, GUAN X, LIU W, et al. Aberrant expression of NEK2 and its clinical significance in non-small cell lung cancer[J]. Oncol Lett, 2014,8(4):1470-1476.
[19] ZENG Y R, HAN Z D, WANG C, et al. Overexpression of NIMA related kinase 2 is associated with progression and poor prognosis of prostate cancer[J]. BMC Urol, 2015,15(1):90.
[20] GU Z, ZHOU W, HUANG J, et al. NEK2 is a novel regulator of B cell development and immunological response[J]. Biomed Res Int, 2014,2014:621082.
[21] VLODAVSKY I, SINGH P, BOYANGO I, et al. Heparanase:from basic research to therapeutic applications in cancer and inflammation[J]. Drug Resist Updat, 2016,29:54-75.
[22] FRANQUI-MACHIN R, HAO M, BAI H, et al. Destabilizing NEK2 overcomes resistance to proteasome inhibition in multiple myeloma[J]. J Clin Invest, 2018,128(7):2877-2893.
基本信息:
DOI:
中图分类号:R733.3
引用信息:
[1]王鹏,郭洁,路来同等.NEK2基因敲低对多发性骨髓瘤细胞介导骨质破坏及NF-κB信号通路的影响[J].山东医药,2025,65(05):7-11.
基金信息:
山东省自然科学基金青年项目(ZR2020QH121); 山东省医药卫生科技发展计划项目(2018WS481)