nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 05, v.65 18-23
基于线粒体自噬探讨OPA1过表达抑制IL-1β诱导人软骨细胞损伤的作用机制
基金项目(Foundation):
邮箱(Email): 15829086908@163.com;
DOI:
摘要:

目的 基于线粒体自噬探讨过表达视神经萎缩蛋白1(OPA1)抑制白细胞介素1β(IL-1β)诱导人软骨细胞损伤的作用机制。方法 取对数生长期人软骨细胞(C28/I2细胞),将其随机分为对照组、IL-1β组、IL-1β+空质粒腺病毒(Ad-null)组、IL-1β+OPA1腺病毒(Ad-OPA1)组。除对照组外,其他各组加入10 ng/mL的IL-1β诱导细胞损伤,24 h后取IL-1β+Ad-OPA1组、IL-1β+Ad-null组细胞,分别转染Ad-OPA1(过表达)、Ad-null,用实时荧光定量反转录聚合酶链式反应(RT-qPCR)验证转染效率。用Annexin V/碘化丙啶双染色法检测细胞凋亡率,用Western blotting法检测细胞凋亡相关蛋白[半胱氨酸天冬氨酸蛋白水解酶3(Caspase-3)、B细胞淋巴瘤2(Bcl-2)、Bcl-2关联X蛋白(BAX)]、细胞外基质(ECM)降解相关蛋白[Ⅱ型胶原蛋白(ColⅡ)、聚集蛋白聚糖(AGC)、基质金属蛋白酶13(MMP-13)]表达,用比色法检测细胞中氧化应激指标[活性氧(ROS)、谷胱甘肽(GSH)、超氧化物歧化酶(SOD)],分别用紫外-可见分光光度计、RT-qPCR测定细胞线粒体功能障碍指标[三磷酸腺苷(ATP)及过氧化物酶体增殖物激活受体γ共激活因子1α(PGC-1α)、线粒体融合蛋白1(MFN1)、动力蛋白相关蛋白1(Drp1)] mRNA表达,Western blotting法检测细胞中线粒体自噬相关蛋白[p62、自噬相关蛋白1(Beclin-1)、溶酶体相关膜蛋白1(LAMP1)、抑癌基因诱导激酶1(PINK1)、帕金森病蛋白2(Parkin)、泛素特异性蛋白酶30(USP30)]表达。结果 IL-1β+Ad-OPA1组OPA1 mRNA相对表达量高于IL-1β+Ad-null组(P均<0.05)。与对照组比较,IL-1β组、IL-1β+Ad-null组细胞凋亡率高,Caspase-3、BAX蛋白相对表达量高而Bcl-2蛋白相对表达量低(P均<0.05),ColⅡ、AGC蛋白相对表达量低而MMP-13蛋白相对表达量高(P均<0.05),ROS水平高而GSH、SOD水平低(P均<0.05),ATP及PGC-1α、MFN1mRNA相对表达量低而Drp1 mRNA相对表达量高(P均<0.05),p62、USP30蛋白相对表达量高而Beclin-1、LAMP1、PINK1、Parkin蛋白相对表达量低(P均<0.05)。与IL-1β+Ad-null组比较,IL-1β+Ad-OPA1组以上指标变化均逆转(P均<0.05)。结论 OPA1过表达可能通过激活线粒体自噬以减轻线粒体功能障碍和氧化应激,从而抑制IL-1β诱导的人软骨细胞凋亡及ECM降解。

Abstract:

Objective To investigate the mechanism by which overexpression of optic atrophy 1(OPA1) inhibits interleukin-1β(IL-1β)-induced human chondrocyte injury, focusing on mitochondrial autophagy. Methods Human chondrocytes(C28/I2 cells) in the logarithmic growth phase were randomly divided into four groups: control, IL-1β, IL-1β +adenovirus empty vector(Ad-null), and IL-1β + OPA1 adenovirus(Ad-OPA1) groups. Except for the control group, all groups were treated with 10 ng/mL IL-1β to induce cellular injury. After 24 h, cells in the IL-1β + Ad-OPA1 and IL-1β +Ad-null groups were transfected with Ad-OPA1 and Ad-null, respectively. Real-time reverse transcription-quantitative PCR(RT-qPCR) was used to verify the transfection efficiency. Apoptosis rates were measured using Annexin V/propidium iodide(PI) double staining. Western blotting was performed to detect apoptosis-related proteins [cleaved caspase-3, B-cell lymphoma 2(Bcl-2), and Bcl-2-associated X protein(BAX)] and extracellular matrix(ECM) degradation-related proteins [type Ⅱ collagen(Col Ⅱ), aggrecan(AGC), and matrix metalloproteinase 13(MMP-13)]. Oxidative stress markers [reactive oxygen species(ROS), glutathione(GSH), and superoxide dismutase(SOD)] were quantified via colorimetric assays. Mitochondrial dysfunction indicators [adenosine triphosphate(ATP), peroxisome proliferator-activated receptor γ coactivator 1α(PGC-1α), mitofusin 1(MFN1), and dynamin-related protein 1(Drp1)] were analyzed using UV-Vis spectrophotometry(for ATP) and RT-qPCR(for mRNA expression). Additionally, Western blotting was utilized to assess the expression levels of mitochondrial autophagy-related proteins [p62, Beclin-1, lysosome-associated membrane protein 1(LAMP1), PTEN-induced kinase 1(PINK1), Parkin, and ubiquitin-specific protease 30(USP30)]. Results The relative expression level of OPA1 mRNA in the IL-1β+Ad-OPA1 group was higher than that in the IL-1β+Ad-null group(P<0. 05). Compared with the control group, the IL-1β and IL-1β + Ad-null groups exhibited significantly increased apoptosis rates, elevated levels of cleaved caspase-3 and BAX, reduced Bcl-2 expression(all P<0. 05), decreased Col Ⅱand AGC, increased MMP-13(P<0. 05), higher ROS levels, lower GSH and SOD activity(all P<0. 05), reduced ATP and PGC-1α/MFN1 mRNA expression, elevated Drp1 mRNA(all P<0. 05), up-regulated p62 and USP30, and down-regulated Beclin-1, LAMP1, PINK1, and Parkin(all P<0. 05). These effects were reversed in the IL-1β + Ad-OPA1 group compared to the IL-1β + Ad-null group(all P<0. 05). Conclusion Overexpression of OPA1 may alleviate mitochondrial dysfunction and oxidative stress by activating mitochondrial autophagy, thereby inhibiting IL-1β-induced chondrocyte apoptosis and ECM degradation.

参考文献

[1] CHENG S, PENG L, XU B, et al. Protective effects of hydrogenrich water against cartilage damage in a rat model of osteoarthritis by inhibiting oxidative stress, matrix catabolism, and apoptosis[J]. Med Sci Monitor, 2020,26(1):920211-920218.

[2] GUIDOTTI S, MINGUZZI M, PLATANO D, et al. Glycogen synthase kinase-3 beta inhibition links mitochondrial dysfunction,extracellular matrix remodelling and terminal differentiation in chondrocytes[J]. Sci Rep, 2017,21(7):12059.

[3] HAMACHER B, Brady N. Mitophagy programs:mechanisms and physiological implications of mitochondrial targeting by autophagy[J]. Cell Mol Life Sci, 2016,73(4):775-795.

[4] SUN K, JING X, GUO J, et al. Mitophagy in degenerative joint diseases[J]. Autophagy, 2021,17(9):2082-2092.

[5] FAN D, YANG X, LI Y, et al. 17 beta-estradiol on the expression of G-protein coupled estrogen receptor(GPER/GPR30)mitophagy, and the PI3K/AKT signaling pathway in ATDC5 chondrocytes in vitro[J]. Med Sci Monitor, 2018,24(2)1936-1947.

[6] MINGUZZI M, CETRULLO S, DADAMO S, et al. Emerging players at the intersection of chondrocyte loss of maturational arrest, oxidative stress, senescence and low-grade inflammation in osteoarthritis[J]. Oxid Med Cell Longev, 2018,11(11):293.

[7] LIU R, CHAN D. OPA1 and cardiolipin team up for mitochondrial fusion[J]. Nat Cell Biol, 2017,19(7):760-762.

[8] JANG S, JAVADOV S. OPA1 regulates respiratory supercomplexes assembly:the role of mitochondrial swelling[J]. Mitochondrion, 2020,51(12):30-39.

[9] ROMANELLO V, SCALABRIN M, ALBIERO M, et al. Inhibition of the fission machinery mitigates OPA1 impairment in adult skeletal muscles[J]. Cells, 2019,8(6):597.

[10] MAIMAITIJUMA T, YU J H, REN Y L, et al. PHF23 negatively regulates the autophagy of chondrocytes in osteoarthritis[J].Life Sci, 2020,15(6):253.

[11] GUO Z, WANG H, ZHAO F, et al. Exosomal circ-BRWD1 contributes to osteoarthritis development through the modulation of miR-1277/TRAF6 axis[J]. Arthritis Res Ther, 2021,23(1):159-173.

[12] ZAMLI Z, SHARIF M. Chondrocyte apoptosis:a cause or consequence of osteoarthritis[J]. Int J Rheum Dis, 2011,14(2):159-166.

[13] OKUBO M, OKADA Y. Destruction of the articular cartilage in osteoarthritis[J]. Clin Calcium, 2013,23(12):1705-1703.

[14] BOLDUC J A, COLLINS J A, LOESER R F. Reactive oxygen species, aging and articular cartilage homeostasis[J]. Free Radical Bio Med, 2019,132(2):73-82.

[15] ZHENG Z, XIANG S, WANG Y, et al. NR4A1 promotes TNFalpha-induced chondrocyte death and migration injury via activating the AMPK/Drp1/mitochondrial fission pathway[J]. Int J Mol Med, 2020,45(1):151-161.

[16] CHEN Y, LIN J, CHEN J, et al. Mfn2 is involved in intervertebral disc degeneration through autophagy modulation[J]. Osteoarthr Cartilage, 2020,28(3):363-374.

[17] BAECHLER B L, BLOEMBERG D, QUADRILATERO J. Mitophagy regulates mitochondrial network signaling, oxidative stress, and apoptosis during myoblast differentiation[J]. Autophagy, 2019,15(9):1606-1619.

[18] BLANCO F J, FERNANDEZ M. Mitochondrial biogenesis:a potential therapeutic target for osteoarthritis[J]. Osteoarthr Cartilage, 2020,28(8):1003-1006.

[19] WANG S, DENG Z, MA Y, et al. The role of autophagy and mitophagy in bone metabolic disorders[J]. Int J Biol Sci, 2020,16(14):2675-2691.

[20] ANSARI M Y, KHAN N M, AHMAD I, et al. Parkin clearance of dysfunctional mitochondria regulates ROS levels and increases survival of human chondrocytes[J]. Osteoarthr Cartilage, 2018,26(8):1087-1097.

[21] CHEN Y, LIN J, CHEN J, et al. Mfn2 is involved in intervertebral disc degeneration through autophagy modulation[J]. Osteoarthr Cartilage, 2020,28(3):363-374.

[22] WANG F S, KUO C W, KO J Y, et al. Irisin mitigates oxidative stress, chondrocyte dysfunction and osteoarthritis development through regulating mitochondrial integrity and autophagy[J]. Antioxidants, 2020,9(9):810.

基本信息:

DOI:

中图分类号:R684.3

引用信息:

[1]白星,高正超,张凯等.基于线粒体自噬探讨OPA1过表达抑制IL-1β诱导人软骨细胞损伤的作用机制[J].山东医药,2025,65(05):18-23.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文