nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2020, 06, v.60;No.1164 1-4
基于SEIR模型对武汉市新型冠状病毒肺炎疫情发展趋势预测
基金项目(Foundation): 国家自然科学基金资助项目(81901606);; 无锡市卫生计生科研面上项目(MS201642)
邮箱(Email):
DOI:
摘要:

目的预测武汉市新型冠状病毒肺炎(新冠肺炎)疫情的发展趋势及不同管控开始时间、管控强度对新冠肺炎疫情的影响。方法收集2020年1月20日~2月18日武汉市新冠肺炎疫情的相关数据,利用Matlab构建SEIR模型,模拟新冠肺炎疫情发展趋势,利用Pearson相关性检验分析模拟的武汉市新冠肺炎疫情与实际疫情的相关性,加入不同管控时效(即自1月23日武汉封城后第10天,第15天和第20天开始管控)和不同管控强度(即易感者分别接触10、7、3例)等参数分析防控策略对武汉市新冠肺炎疫情发展的影响。结果 SEIR模型模拟的武汉市新冠肺炎疫情拐点出现在武汉封城后第35天,即2月底,同时新冠肺炎疫情在4月底基本得到控制。SEIR模型模拟的武汉市新冠肺炎疫情发展情况与实际新冠肺炎疫情的相关系数为0. 96(P <0. 05)。与1月23日武汉封城后第15、20天开始管控相比,第10天开始管控的新冠肺炎疫情感染者峰值分别减少160. 95%和98. 67%。易感者接触3例比易感者分别接触10、7例的新冠肺炎疫情感染者峰值分别下降49. 21%和34. 84%。结论现有管控措施影响下,基于SEIR模型预测的武汉市新冠肺炎疫情拐点出现在武汉封城后第35天,与实际已经发生的新冠肺炎疫情符合,新冠肺炎疫情基本在4月底可得到控制。越早开始管控并且管控强度越大,对新冠肺炎疫情的干预越有效,宜尽早切断传播途径。

Abstract:

Objective To predict the development trend and the intervention effects of different control start time and control intensity on coronavivus disease 2019(COVID-19) epidemic in Wuhan,and to provide the prevention and control strategies for COVID-19. Methods We collected the relevant data of COVID-19 epidemic in Wuhan from Jan. 20 to Feb. 18,2020,and built a SEIR model through Matlab to simulate the development trend of the epidemic situation. In addition,Pearson correlation analysis was utilized to analyze the correlation between simulated epidemic situation and actual epidemic situation. Some parameters were added to analyze the influence of prevention and control strategies on the development of the epidemic situation such as different control time,namely,from the 10 th,15 th and 20 th days after Jan. 23(the day Wuhan was locked down),and different control intensity,meaning that the susceptible persons exposed to 10,7 and 3 people,respectively. Results The inflection point of COVID-19 simulated by the SEIR model appeared on the thirty-fifth day,which was the end of February,and the epidemic would be basically controlled at the end of April. The correlation coefficient between the result simulated by the SEIR model and the actual situation was 0. 96(P < 0. 05). Compared with the two later control start time(on the 15 th and 20 th days after Jan. 23),the peak number of infected persons of the earliest control start time was reduced by 160. 95% and 98. 67%,respectively. Moreover,the peak number of the strongest control intensity(the susceptible persons exposed to 3 people) was 49. 21% and 34. 84% lower than that of the other two control intensity(the susceptible persons exposed to 10 or 7 people),respectively. Conclusions Based on the SEIR model,the COVID-19 epidemic inflection point is predicted on the thirty-fifth day,which is in line with the actual situation,and the epidemic will be basically controlled at the end of April. The earlier the control and the stronger the control intensity,the more effective the intervention will be. Meanwhile,we should cut off the transmission routes as soon as possible.

参考文献

[1]Li Q,Guan X,Wu P,et al.Early transmission dynamics in Wuhan,China,of novel coronavirus:infected pneumonia[J].N Engl J Med,2020.doi:10.1056/NEJMoa 2001316.

[2]Chen Y,Liu Q,Guo D.Emerging coronaviruses:genome structure,replication,and pathogenesis[J].J Med Virol,2020.doi:10.1002/jmv.25681.

[3]Zhu N,Zhang D,Wang W,et al.A Novel Coronavirus from patients with pneumonia in China,2019[J].N Engl J Med,2020.doi:10.1056/NEJMoa 2001017.

[4]Huang C,Wang Y,Li X,et al.Clinical features of patients infected with 2019 novel coronavirus in Wuhan,China[J].Lancet,2020.doi:10.1016/S0140-6736(20)30183-5.

[5]耿辉,徐安定,王晓艳,等.基于SEIR模型分析相关干预措施在新型冠状病毒肺炎疫情中的作用[J].暨南大学学报(自然科学与医学版):1-7[2020-02-14].http://kns.cnki.net/kcms/detail/44.1282.n.20200214.1318.002.html.

[6]范如国,王奕博,罗明,等.基于SEIR的新型肺炎传播模型及拐点预测分析[J/OL].电子科技大学学报:1-6[2020-02-23].http://kns.cnki.net/kcms/detail/51.1207.T.20200221.1041.002.html.

[7]Li MY,Wang L.Mathematical approaches for emerging and reemerging infectious diseases:models,methods,and theory[M].New York:Springer,2002:295-311.

[8]Khan MA,Khan Y,Islam S.Complex dynamics of an SEIR epidemic model with saturated incidence rate and treatment[J].Physica Stat Mech Appli,2018,493:210-227.

[9]徐恭贤,冯恩民,王宗涛,等.SARS流行病的SEIR动力学模型及其参数辨识[J].黑龙江大学自然科学学报,2005,4(9):459-467.

[10]姚璜,杨盛力,魏守蓉.新形势下应对新型冠状病毒,防控为首[J/OL].医药导报:1-9[2020-02-11].http://kns.cnki.net/kcms/detail/42.1293.R.20200211.2022.005.html.

[11]李爱芹,闫玉芬,田立启,等.新型冠状病毒肺炎疫情初期的应对策略与效果[J/OL].中国医院管理:1-5[2020-02-27].http://kns.cnki.net/kcms/detail/23.1041.C.20200227.2211.026.html.

[12]杨雨琦,孙琦,王悦欣,等.重庆市新型冠状病毒肺炎(NCP)疫情分析与趋势预测[J/OL].重庆师范大学学报(自然科学版):1-6[2020-02-18].http://kns.cnki.net/kcms/detail/50.1165.n.20200218.0746.002.html.

基本信息:

DOI:

中图分类号:R563.1

引用信息:

[1]蔡洁,贾浩源,王珂.基于SEIR模型对武汉市新型冠状病毒肺炎疫情发展趋势预测[J].山东医药,2020,60(06):1-4.

基金信息:

国家自然科学基金资助项目(81901606);; 无锡市卫生计生科研面上项目(MS201642)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文